China's 'Artificial Sun' Just Broke a Major World Record For Plasma Fusion - Science Club

your daily dose of science and nature

Thursday, January 6, 2022

China's 'Artificial Sun' Just Broke a Major World Record For Plasma Fusion

Just seven months after it announced a milestone record for plasma fusion, the Chinese Academy of Sciences has absolutely smashed it.

Their 'artificial Sun' tokomak reactor is has maintained a roiling loop of plasma superheated to 120 million degrees Celsius (216 million degrees Fahrenheit) for a gobsmacking 1,056 seconds, the Institute of Plasma Physics reports.

This also beats the previous record for plasma confinement of 390 seconds, set by the Tore Supra tokamak in France in 2003.

This breakthrough by the EAST (Experimental Advanced Superconducting Tokamak, or HT-7U) reactor is a significant advance for fusion experimentation in the pursuit of fusion energy.

Succeeding in the generation of usable amounts of energy via nuclear fusion would change the world, but it's incredibly challenging to accomplish. It involves replicating the processes that take place in the heart of a star, where high pressure and temperature squeeze atomic nuclei together so tightly that they fuse to form new elements.

In the case of main sequence stars, these nuclei are hydrogen, which fuse to form helium. Since one helium nucleus is less massive than the four hydrogen nuclei that fuse to make it, the excess mass is radiated as heat and light.

This generates a tremendous amount of energy – enough to power a star – and scientists are striving to harness the same process here on Earth. Obviously, there's a significant challenge in creating the heat and pressure that we find in the heart of a star, and there are different technologies to address them.

Just seven months after it announced a milestone record for plasma fusion, the Chinese Academy of Sciences has absolutely smashed it.

Their 'artificial Sun' tokomak reactor is has maintained a roiling loop of plasma superheated to 120 million degrees Celsius (216 million degrees Fahrenheit) for a gobsmacking 1,056 seconds, the Institute of Plasma Physics reports.

This also beats the previous record for plasma confinement of 390 seconds, set by the Tore Supra tokamak in France in 2003.

This breakthrough by the EAST (Experimental Advanced Superconducting Tokamak, or HT-7U) reactor is a significant advance for fusion experimentation in the pursuit of fusion energy.

Succeeding in the generation of usable amounts of energy via nuclear fusion would change the world, but it's incredibly challenging to accomplish. It involves replicating the processes that take place in the heart of a star, where high pressure and temperature squeeze atomic nuclei together so tightly that they fuse to form new elements.

In the case of main sequence stars, these nuclei are hydrogen, which fuse to form helium. Since one helium nucleus is less massive than the four hydrogen nuclei that fuse to make it, the excess mass is radiated as heat and light.

This generates a tremendous amount of energy – enough to power a star – and scientists are striving to harness the same process here on Earth. Obviously, there's a significant challenge in creating the heat and pressure that we find in the heart of a star, and there are different technologies to address them.

No comments:

Post a Comment